EVALUATING AND EXPRESSING THE UNCERTAINTY OF NIST MEASUREMENT RESULTS

General Goals Update NIST guidelines to: (i) increase freedom of choice required by scien-
tists, statisticians, and mathematicians to be able to address needs of rapidly evolving and
expanding fields of measurement science; (ii) Widen class of measurement models used to as-
sign values to measurands and to evaluate measurement uncertainty; (iii) Facilitate critical
assessment of models and assumptions, in particular of those that support the probabilistic
interpretation of measurement uncertainty.

Grandfathering All uncertainty evaluations published as part of measurement results pro-
duced in the delivery of NIST measurement services (reference materials and calibrations)
remain valid and need not to be redone; the uncertainty evaluation procedures described
in NIST TN 1297 and in the GUM (1995, 2008) may continue to be used going forward.

Measurement is understood in a wide sense as an experimental or computational process
that produces a measurement result intended for use in support of decision-making (cf R.
White, 2011, ACQUAL 16: 31-44). A measurement result comprises: (i) an estimate of the
value of a property of a material or virtual object or collection of objects, or of an event or
series of events, using empirical data possibly in conjunction with preexisting knowledge;
and (ii) an evaluation of the measurement uncertainty associated with that estimate.

Measurement uncertainty is a quantity that characterizes the dispersion of the values that
may be attributed to a measurand and that are consistent with the empirical data and with
other relevant information about the true value of the measurand.

e A probability distribution, on the set of values of the measurand, that describes the state of
knowledge about the true value of the measurand, provides the most complete characteriza-
tion of measurement uncertainty. This state of knowledge may be an individual scientist’s, or
a scientific community’s.

¢ In many cases, and for scalar measurands, the dispersion of values may be summarized by
the standard deviation of this distribution (standard uncertainty). For multivariate and more
general measurands, analogous summaries may be used.

e For nominal properties, the entropy of the corresponding distribution is a summary descrip-
tion of measurement uncertainty.

Measurement models describe the relationship between the value of the measurand and
the quantities used to estimate it: (i) a measurement equation expresses the measurand as
a known function of a set of input quantities; (ii) an observation equation (or, statistical
model) expresses the measurand as a known function of the parameters of the probability
distribution that describes the variability of the empirical data used in measurement.

Uncertainty evaluations of Type A involve the application of statistical methods to exper-
imental data, consistently with the measurement model. Evaluations of Type B involve the
elicitation of (selected attributes of) probability distributions that describe states of knowl-
edge about the values of participating quantities, for example using the MATCH Uncertainty
Elicitation Tool available at optics.eee.nottingham.ac.uk/match/uncertainty.php.

Uncertainty propagation for measurands defined by measurement equations, use either
Gauss’s formula (Equation (A-3) in NIST TN 1297) and all the methods described in the
GUM (1995, 2008) and in NIST TN 1297, or Monte Carlo methods described in the GUM
Supplement 1: both are implemented in the NIST Uncertainty Machine (stat.nist.gov/
uncertainty), with user’s manual at www.nist.gov/it1l/sed/gsg/uncertainty.cfm. For
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measurands defined via observation equations, use methods of mathematical statistics, se-
lected and applied in collaboration with a statistician or applied mathematician.

Express measurement uncertainty most completely by fully specifying a probability dis-
tribution that exactly or approximately describes the state of knowledge about the value of
the measurand (both the NIST Uncertainty Machine and methods of mathematical statistics
can produce arbitrarily large samples from such distribution). In many cases, a summary of
the dispersion of values of the distribution suffices: for example, the standard deviation for
scalar measurands, the covariance matrix for multivariate measurands (or the correspond-
ing 68 % probability coverage hyper-ellipsoid), or more generally a coverage region that,
with specified probability (95 % typically), is believed to include the true value of a scalar
or multivariate measurand.

Example 1: Thermal Expansion Coefficient a = (L, — Ly)/(Lo(T; — Ty)) of a copper bar whose
lengths Ly = 1.4999m and L; = 1.5021 m were determined at temperatures T, = 288.15K and
T; = 373.10K, with standard uncertainties u(L,) = 0.0001m, u(L;) = 0.0002m, u(T,) = 0.02K,
and u(T;) = 0.05K. The estimate of the measurand is @ = 1.727 x 107°K ™!, and Gauss’s formula
produces u(@) = 1.8 x 107°K~!, both computed using the NIST Uncertainty Machine.

Example 2: Falling Ball Viscometer to measure the dynamic viscosity u,,; of a solution of sodium
hydroxide in water at 20 °C, using a boron silica glass ball of mass density pz. The measurement
equation is uy = uc[(pp — pm)/ (s — Pc)](tm/tc), where uc = 4.63mPas, pc = 810kg/meter?,
and t; = 36.65s denote the viscosity, mass density, and ball travel time for the calibration liquid, and
pm = 1180kg/m?® and t,; = 61 s denote the mass density and ball travel time for the sodium hydrox-
ide solution. If the input quantities are modeled as independent Gaussian random variables with
means equal to their assigned values, and standard deviations equal to their standard uncertainties
u(uc) = 0.01uc, u(pg) = u(pc) = u(py) = 0.5kg/m3, u(tc) = 0.15t¢, and u(ty) = 0.10ty;, then
the Monte Carlo method of the GUM Supplement 1 as implemented in the NIST Uncertainty Machine
produces: Uy, = 5.82mPas, u(liy) = 1.11mPas, and (4.05mPas, 8.39 mPas) as approximate 95 %
coverage interval for uy; (Note that this interval is asymmetric relative to the estimate [iy;.)

Example 3: Characteristic Strength of alumina is measured using the observed stresses at which
32 specimens of the material fractured in a flexure test (J. B. Quinn and G. D. Quinn, 2010, Dental
Materials 26: 135-147): 265, 272, 283, 309, 311, 320, 323, 324, 326, 334, 337, 351, 361, 366, 375,
380, 384, 389, 390, 390, 391, 392, 396, 396, 396, 396, 398, 403, 404, 429, 430, 435 MPa. A tenable
statistical model (observation equation) describes the data as outcomes of independent random
variables with the same Weibull distribution whose scale parameter is the characteristic strength.
The maximum-likelihood estimate is 383 MPa with approximate standard uncertainty 7 MPa, and
(369 MPa, 398 MPa) is an approximate 95 % coverage interval, computed using R package bbmle.

Example 4: Forensic classification of the source of glass fragments, based on a function built
using mixture discriminant analysis (T. Hastie, R. Tibshirani, and J. Friedman, 2009, The Elements
of Statistical Learning: Data Mining, Inference, and Prediction, Springer), whose inputs are the mass
fractions of oxides of the major elements (Na, Mg, Al, Si, K, Ca, Ba, Fe) and the refractive index,
produces a probability distribution over the set of possible sources.

Given values of these mass fractions (%) 13.92, 3.52, 1.25, 72.88, 0.37, 7.94, 0, 0.14, and of the
refractive index 1.51613, for a particular fragment whose source is unknown, the classifier produces
the following output (discrete) probability distribution: building window (float) 0.38, building win-
dow (non-float) 0.55, vehicle window 0.07, containers 0, tableware 0, headlamps 0. The resulting
assigned value is “building window (non-float)” because it is the most likely. The distribution may be
used directly in subsequent Monte Carlo uncertainty propagations, or its dispersion may be summa-
rized by its entropy H = —(0.3810g(0.38) + 0.5510g(0.55) 4+ 0.0710g(0.07)) = 0.88. Computations
done using R package mda with data from K. Bache & M. Lichman (2013 UCI Machine Learning
Repository, University of California, Irvine, CA).
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